
Math Logic: Model Theory & Computability
Lecture 27

Recall that we call a relation REIN" computable if Ap : /Nk-IN is computable.
We can also prove the converse (in come sense) :

Graph property. A function f : I" -> IN is computable iff its graph 6 :=((,bleIN'+
flat = b) is ro-potable .
Proof. E : Suppose F : /NP-SIN is computable . Then for each (a

,
b) < NNRH,

(
,
b) + G ift flat = 6 iff +(p*(, b), . . ., Pr

*

(
, b)) = Pla, b)

so lef is computable since = is.

E
. Suppose Go is computable. Then f(x) : = My (G*,y) in computable.

We will show later that computable relations are not closed under quantifiers 5 ,
F.

However :

Bounded quantification: The close of computable relations is closed under bounded quar-
tification

,
i
.
e .
for each computable relation R : IN IN

,
the relations

R
,
R2 = Nx IN defined by

R
, (i

,
n) : <=> Jy =n R(, y)

R2(, n) :< by n R(, y)
are computable.
Propf

.
Since computatable functions are closed under negation , it is enough he

prove U R
, is computable. For each (,)EINR+,
Ri(

,
n) => Mx(R( , x) vx > n) n.

Prop . The following functions are computable :



(a) Safe subtraction · IN-IN defined by (x
, y) It max ho, x-yb.

(6) Division : IN-IN defined by (, 3) It GE) it y F

1) Rewinder Rem : IN -> IN drived by (x/ 3) It (- ) S
(d) Pair : IN2 -> IN defined by

(x
, 3) + (x+) +·

3 - 9
(1,2) u

the offset on the ( +g)th2-5 ↑ 8
-

I -a
# of pairs oh4 7

- 6 the diagonals before diagonal
0002 3 the (x +g)t diagonal

(2) Left : /N-> IN defined by z is the unique x such that there is y such let

Pair (x
, b) = z .

Right : IN-> IN ceived is 23 the unique y such that there is x such let

Pair (x
, b) = z .

Proof
.
(a)-() is nonework

,
(d) is clear

,
so we prove (e). Note let

Left(z) = (x(7yzz Pair(x , y) = z)
Right (2) = My (7 x = - Pair (x

, 1) = z).

Nedkind's analysis of recursion. Suppose fi
**
- IN is defined by primitive recursion from

g
: IN" -> IN and h : Nk+-> IN, i .l . for all (ii

,
u)E IN"

,

(f( , 0
= g(i)

fa
,
n+ 1) = h(, n , f(a ,

n))
Then for each ( , 2) IN

+ 1 and mEIN ,

f(a
,
n) = m if F CINCIN th(s) = n+ 1 and co = gla)

and <n = m and Ficn (x = ha, i , (i).
Proof. Follows by induction on i let ci = flas, i).

We will use Deckind analysis to implement primitive recursion via success full search
,



but for this we need to computable encode/decode taples of natural numbers of

cobitrary length . This is done by Gode using :

Chinese Remainder Theorem
.
If do

,
de
, ...,
In EIN are pairwise reprime numbers ,

then
, putting d := d .. di ... do , the function h : 2/dIt NdkX ...XE/dn *

in a well-defined group-isomorphism. laJe it /laid ., late, , ..., [a]da)

Proof . Well-defineduen follows from the fact but if a =b ten a Fab for all i

that h is a group-homomorphism is because modding out respects addin
fou

.
Become both groups /

and I/d
.DX ... xEd- a d elements,hve

it is enough to dow (b) Whe Pigeonhole Principle) Heat h is injective,
for which we needbe check let if hisaid) = 10

,
0
...,

0) HenCald : Cold.

Suppose h(Sa]d) = 0
,

i

.e
. Ca]di = Colde for all i

,
i.e. di divides a fall i.

By the pairwise oprimete of the dis d = did du divides a
,
so Cald = 102

bodel's B function . There is a computable function B : IN2-I
, namely

& (w
,
i) : = Rem (Left(w)

,

1 + (i+ 1) Right(wll

such that for each EIN' there is WEN with di = B(m
,
i) for all

i < Ch(a)
,

where we write a = 100
,
a
, ...,
anil-

Proof. Let m : = max (00
,
a
, ..., an , us and put die= 1 + (it) . (m !) for each i = 0,%.

The di are pairwise coprime because fr any isjou , if a prime p divides

both di and dj then p divides do-li = (j-i) · (m ! ) . Since (j-i) Im !C

if i-i + 0 ,
we get let p divides m !, contracticing that pldi = 1+) )

.

Here
,
i = j.

By The Chinese Remainder Duem
,
there is and and that Recla

,
dil-ai

.

Take w := Pairla
,
m ! )

,
10 Rem Kleftln)

,
1+ i Rightswl) : Reala

,
Hi + 1) (m ! 1) =

Rem (a
,
dil = Di .


