Math Logic: Model Theory \& Computability
Lecture 26

Computable functions and relations,
There are man definitions of coupatability and all of them are equivalent, mich suggests that his is the "correct" notion captericy our intuitive unclerstanding of what algorithm is.

Def. For $k \in \mathbb{N}$, a relation $R \subseteq \mathbb{N}^{k+1}$ and $\vec{a} \in \mathbb{N}^{k}$, we let $\mu_{x}(R(\vec{a}, x))$ denote the lest $x \in \mathbb{N}$ such that $R(\vec{a}, x)$ holds if such an x exists; othecvise we se let $\mu_{x}(R(\vec{a}, x))$ is undefined, anal wite $\mu_{x}(R(\vec{n}, x))=1$. This is called the search or minimization operation.

Def. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is called computable it it is either one of the functions in (C1) or is obtained from the functions in (C1) by finitely many applications of the operations (cz) and (ch).
(ci) Primitives:
(i) addition $+: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by $(x, y) \mapsto x+y$.
(ii) multiplication: $: \mathbb{N}^{2} \rightarrow \mathbb{N}$ b $(x, y) \mapsto x \cdot y$.
(iii) less than of equal bo: $\mathbb{1} \leq: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by $(x, y) \mapsto \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { otherwise }\end{cases}$
(ives) projections: for ch $i \leq k$, the function $P_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by

$$
\left(x_{1}, k_{1}, \ldots, x_{k}\right) \mapsto x_{i} .
$$

(c2) Composition: if $g: \mathbb{N}^{m} \rightarrow \mathbb{N}$ and $h_{i}: \mathbb{N}^{k} \rightarrow \mathbb{N}$, for $i=1, \ldots, m$, are compartable then so is $f:\left(\mathbb{N}^{k} \rightarrow \mathbb{N}\right.$ by $\vec{a} \mapsto g\left(h_{1}(\vec{a}), \ldots, h_{m}(\vec{a})\right)$.
is corputable and is
(C3) Snccessitul search: if $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}^{V}$ such that for each $\vec{a} \in \mathbb{N}^{k}$ there is $x \in \mathbb{N}$ with $g(\vec{a}, x)=0$, the the fration $f=\mathbb{N}^{k} \rightarrow \mathbb{N} \quad b_{b} \quad \vec{a} \mapsto \mu_{x}(g(\vec{a}, x)=0)$ is co-putable. In his case ve say that f is olfciced from g hy sucesaft search.

We sey hat a colation $R \subseteq \mathbb{N}^{k}$ is co-putable if sach is its isch cator faction $\mathbb{1}_{R}: \mathbb{N}^{k} \rightarrow \mathbb{N}$, definech by $\vec{a} \mapsto \begin{cases}1 & \text { it } R(\vec{a}) \text { holds } \\ 0 & \text { o(herwise. }\end{cases}$ For exapple, \leq is a parable b_{y} (C1) (iii).

Prop. All ouputable fucctions acd relations are acithmetical, i.e. definuble in $\underline{N}:=(\mathbb{N}, 0,5,+, \cdot)$.
Proot. (CI)(i) ant (ii) are defirable by elfivitise. (C\|(iii) is definable bs the formula $\varphi_{\leq}(x, y, z):=(\leq(x, y) \rightarrow z=1) \wedge(\neg \leq(x, y) \rightarrow z=0)$, where $\leq(x, y):=J_{u}(x+u=y)$. Finadly (C1)(iv) for $i \leq k$ is defizable by $\pi_{i}^{k}\left(x_{1}, x_{2}, \ldots, x_{c}, y\right):=\left(x_{i}=y\right)$.
Rat ditimble functing ane closed uaber wonositions vas choun in $H W$. As for succesfal eecreh, if $f(\vec{a}):=\mu_{x}(g(\vec{a}, x)=0)$ anl g is withartical, i.e. efinable $l_{\text {, }}$ a formala $\varphi_{g}(\vec{y}, x, u)$ the f is definable 4, the tormala

$$
\varphi_{f}(\vec{y}, x):=\varphi_{g}(\vec{y}, x, 0) \wedge \forall v\left(v<x \rightarrow \rightarrow \varphi_{g}(\vec{y}, v, 0)\right) \text {, }
$$

chere $v<x$ stands for $\exists t(t \neq 0 \wedge v+t=x)$.
We Lave chosen a minimalistic Aficition of conpatabilits so Unt the previous proposition would be eas to prove. We will now werk towards showiy that the cland of ouputatle tantions is cich and is particalar, is closed uncler the following operation.
$(c k)$ Primitive recursion: For $k \in \mathbb{N}$ and functions $g: \mathbb{N}^{k} \rightarrow \mathbb{N}, h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$, we say the the function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is obtained from $g, h \mathrm{lg}$ primitios recursion if for each $\vec{a} \in \mathbb{N}^{k}$ and $n \in \mathbb{N}$, we have:

$$
\left\{\begin{array}{l}
f(\vec{a}, 0)=g(\vec{a}) \\
f(\vec{a}, n+1)=h(\vec{a}, n, f(\vec{a}, n))
\end{array}\right.
$$

We will speed the sext trap lechires proving the following:
Theorem. The class of computable factions is closed under primitive recursion, i.e. if g, h as above connectable and t is olitaiced tom g, h i, primitive recursion, then f is computable.

Example. The ruction $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$ is obtained trow the constant $n \rightarrow 2^{n}$
faction 1 ant unlitipliation 4, 2 peinitive recursion:

$$
\left\{\begin{array}{l}
2^{0}=1=g(1 \\
2^{n+1}=2 \cdot 2^{n}=h\left(n, 2^{n}\right)
\end{array}\right.
$$

more precisely, here $g=\mathbb{N}^{0} \rightarrow \mathbb{N}$ by $\phi \mapsto 1$ ant $h: \mathbb{N}^{2} \rightarrow \mathbb{N}$ $(n, y) \mapsto 2 \cdot y$.
We will quickly show below hd g and h are aa parable, so the theorem above will gie an that $n \rightarrow 2^{2}$ is also waycloblle.

Prop.
(a) The relations \geqslant and $=$ are coupatable.

Proof. Note Hat $x \geqslant y$ ff $y \leq x$, and to swap the inputs we use projections: $\mathbb{1}_{\geq}\left(x_{1}, x_{2}\right)=\mathbb{1}_{\leq}\left(x_{2}, x_{1}\right)=\mathbb{1}_{\leq}\left(P_{2}^{2}\left(x_{1}, x_{2}\right), P_{1}^{2}\left(x_{1}, x_{2}\right)\right)$.
lastly, woe that $1=\left(x_{1}, x_{2}\right)=\mathbb{1}_{\leq}\left(x_{1}, x_{2}\right) \cdot \mathbb{1}_{2}^{-}\left(x_{1}, x_{2}\right)$.
(b) Constant tanctions are couptable, i.e, for aach $m, k \in \mathbb{N}$, the taction $C_{m}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$, given $l_{s} \quad \vec{a} \mapsto m_{1}$ is compatable.

Pcoot. We prone hy inkectfon on m that for cll $k \in \mathbb{N}, C_{m}^{k}$ is coupctable. Base: $m=0 . \quad c_{0}^{k}(\vec{a})=\mu_{x}\left(P_{k+1}^{k+1}(\vec{a}, x)=0\right)$, $90 \quad g=P_{k+1}^{k+1}$.

Stap: $m \Rightarrow m+1$. Suppose $C_{m}^{l}: \mathbb{N}^{l} \rightarrow \mathbb{N}$ is compstable for wll $l \in \mathbb{N}$. N.te that $x<y$ iff $x \neq y$ iff $\mathbb{1}_{\geqslant}(x, y)=0$. Thus, $C_{m+1}^{k}(\vec{a})=j_{x}\left(C_{m}^{k}(\vec{a})<x\right)=\mu_{x}\left(\mathbb{1}_{\geqslant}\left(C_{m}^{k}(\vec{a}), x\right)=0\right)=$ $=\mu_{x}\left(\mathbb{1} \geqslant\left(C_{m}^{k+1}(\vec{a}, x), P_{k+1}^{k+1}(\vec{a}, x)\right)=0\right)$.
(c) The suncessor fanation $S: \mathbb{N} \rightarrow \mathbb{N}$ by $n \leftrightarrow n+l$ is corputable. Pcost. $\int(x)=x+1=x+C_{1}^{1}(x)=P_{1}^{\prime}(x)+C_{1}^{\prime}(x)$.
(d) The sut af recursive relations is a Boolean algeblec, i.e. is closect undes coaplenents and fizite indersections/hece also ticite naions).

Pcoot. If $R_{1}, R_{2} \subseteq \mathbb{N}^{k}$ dre wouputable k-ary relations, i.e. $\mathbb{1}_{R_{1}}$ aal $\mathbb{1}_{R_{2}}$ are wounutuble functions, then th indicator faction $\mathbb{1}_{R_{1} \cap R_{2}}(\vec{a})=\mathbb{1}_{R_{1}}(\vec{a}) \cdot \mathbb{1}_{R_{2}}(\vec{a})$ is coputable.

If $R \subseteq \mathbb{N}^{k}$ is a coupatable nelation, i.e. $\mathbb{1}_{R}$ is comptable, the ${ }^{-}$

$$
R(\vec{a}) \text { fails iff } \mathbb{1}_{R}(\vec{a})=0
$$

iff $\mathbb{1}_{1}(\vec{a})=C_{0}^{u}(\vec{a})$,
io $\mathbb{N}^{k} \backslash R$ is wopputable b, (a).
(e) Louprable functions are closed weder sacesstul search applied to ang coupatable relation, i.e. if $R \subseteq \mathbb{N}^{k+1}$ is a coupatable Nelation sach that for each $\vec{a} \in \mathbb{N}^{k}$ there is $x \in \mathbb{N}$, ch that $R(\vec{a}, x)$ holds, then the facchon $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ given by $\vec{a} \mapsto \mu_{x}(R(\vec{a}, x))$ is couputable.

Proot. Denote $\neg R:=\mathbb{N}^{k} \backslash R$. Ther:

$$
\begin{equation*}
f(\vec{a})=\mu_{x}(R(\vec{a}, x))=\mu_{x}\left(\mathbb{1}_{R}(\vec{a}, x)=1\right)=\mu_{x}\left(\mathbb{1}_{\rightarrow R}(\vec{a}, x)=0\right) . \tag{2}
\end{equation*}
$$

(f) Coupatiable tactions ane dosed unaler definitions by cases, i.e. if f_{1}, \ldots, f_{m} : $\mathbb{N}^{k} \rightarrow \mathbb{N}$ are rouputable faccions acd $R_{1}, R_{2}, \ldots, R_{n} \leq \mathbb{N}^{k}$ ane cooputable relations that form a pactition of \mathbb{N}^{k}, then the tactien $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ defined by

$$
\vec{a} \mapsto\left\{\begin{array}{cl}
f_{1}(\vec{a}) & \text { if } R_{1}(\vec{a}) \text { holds } \\
f_{2}(\vec{a}) & \text { if } R_{2}(\vec{a}) \text { holds } \\
\vdots & \\
f_{m}(\vec{a}) & \text { if } R_{m}(\vec{a}) \text { holds }
\end{array}\right.
$$

is woysutable.
Pcrot. left as HWW.

