Math Logic: Model Theory & Computability Lecture 24

Sketch of proof of Gödel Incompleteness.

<u>Def (Informal)</u>. Let J be a finite signature. Call a o-theory T computatable if there is a computer program such that given a o-settlence 4 as input, answers YES if 4ET and NO if 44T.

Göclel's Incompletencer, let T := (0, S, +, ·) and N := (N, 0, S, +, ·). These every computable sabturg T & Th(N) is incomplete. In particular, PA is incomplete.

Gödel's theorem is like the late paintings of Claude Monet.
 It is easy to perceive, but from a certain distance. A
 close look reveals only fastidious details that one perhaps
 does not want to know.

Jean-Yves Girard —

Det (Internal), For each KEINt, a Eachion f: INK-SIN is called compatable if there is a computer program such that on a given input a EIN" outpats E(a). A relation REIN is alled called computable if IR: INK-> 40,135IN is corputable.

Prop. lon putable tunkion / relations are arithmetical, i.e. detinable in N := (N, 0, 5, t)(equivalents, \mathcal{O} -definable in N). Proof. Will fillow easily from the diff of computable, once given .

Loding of tuples of natural numbers and formulas. "Clearly" the tunction $N \mapsto p :=$ wh prime number is unpetable and thus the function $Z \dots Z_k : \|N^k - S \|N^{+}$ is a computable injection. Furthermore, the function $(n_{1}, \dots, n_k) \mapsto P_1^{n_1} \dots P_k^{n_k}$ $Z \dots > : \|N^{< \|N|} \longrightarrow \|N^{+}$ is also a injective and its left-inverse is computable $\vec{a} \mapsto \langle lh(\vec{a}), \vec{a} \rangle_{lh(\vec{a})}$

in the telloring care that the deading tembrous
la + N -> IN and (-). : N²-> IN be each iGN
n +> the lagest l s.t.
$$P_{i}^{l} \mid n$$

in (n) i> the lagest l s.t. $P_{i}^{l} \mid n$
if n +0 and i a the (n)
are is-particular.
We now any this to exclude $\sigma_{ne(k,-)} = (0, 5, +, -) - formulas as hillows.
Encode the Alph ($\sigma_{ne(k,-)}$) by the telloring number:
O, S, t, ., (,), S, =, 3, -1, A, V., Vi, Vi, ...
O t 2 3 4 5 6 7 8 9 10 11 (2 13)
and we denote the number corresponding to a grabol s $cAlph(\sigma_{ne(k)})$ by ((S).
Eq. c(() = 4 and c(Vi,) = 28.
Next, we encode any word W = (Wo, ..., We,) & Alph ($\sigma_{ne(k)}$) by ((S).
Eq. c(() = 4 and c(Vi,) = 28.
Next, we encode any word W = (Wo, ..., We,) & Alph ($\sigma_{ne(k)}$) by ((S).
Eq. c(() = 4 and c(Vi,) = 28.
Next, we encode any word W = (Wo, ..., We,) & Alph ($\sigma_{ne(k)}$) by ((S).
Eq. c(() = 4 and c(Vi,) = 28.
Next, we encode any word W = (Wo, ..., We,) & the filming cuts are compu-
to the formula 4.
Prop. Beense neursive definitions are projectionable, the filming cuts are compu-
table: tormulas($\sigma_{ne(k)}$), Sentences($\sigma_{ne(k)}$), the filming cuts are compu-
table: tormulas($\sigma_{ne(k)}$), Sentences($\sigma_{ne(k)}$), it n = ("q" for some $\sigma_{ne-thermon}$
la 4, and O o therevise Recall (Kt $m_{i} = S(c(\dots, S(0), \dots))$. As mentioned
about, we puble to the formula and arithetic, and more (et Sub.(ty), ?).$

be the s-when Granda abbining this function, i.e. defining it graph, so
for any nymple EW, we have that
subs(u,m)= k iff
$$M \equiv Subs(u,m,k)$$
.
We now prove a lemning which in a survey, implies that there is a program
that print its run code. This is note possible by the fand that we can
use the symbol V. in two weyes as a symbol and as variable that
has write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence in guodes trice, the second time with polos:
"Write the following sectence is guodes trice, the second time with polos:
"Write the following sectence is guodes trice, the second time with polos:
"Write the following sectence is guodes trice, the second time with polos:
"The subscription of Θ , just dike in the E-glitch vertice, the second time is a trice.

New $M \models Subscription of Θ , just dike in the E-glitch vertice is a second formula
and let $m := TY^{-1}$. Let $\Theta := Y(\tilde{m}/v_0)$ for $m := S(S(\dots, S(0)]...).Note the term is been (in m, m, 2) $\wedge Y(\omega)$ is an extended formula
iff there is been (in m, 2) $\wedge Y(\omega)$ is $(m, m, 0) \wedge Y(\omega)$
iff there is been (in m, 0) $\wedge Y(\omega)$
iff there is been (in m, 0) $\wedge Y(\omega)$
iff there is been (in m, 0) $\wedge Y(\omega)$$$