Math Logic: Model Theory \& Computability
Lecture 24

Sketch of proof of Goiclel Incompleteven.

Def (Informal). Lt σ be a finite signature. Call a σ-Theory T computatable if there is a computer program such that given a σ-sentence φ as input, answers YES if $\varphi \in T$ and $N O$ it $\varphi \notin T$.

Gödel's Incompleteneen. let $\sigma:=(0, S,+, \cdot)$ and $\underline{N}:=(\mathbb{N}, 0, S,+, \cdot)$. Thea every computable sabtheon $T \in T_{R}(\underline{N})$ is incomplete. In particular, $P A$ is incomplete.

Gödel's theorem is like the late paintings of Claude Monet.
It is easy to perceive, but from a certain distance. A close look reveals only fastidious details that one perhaps does not want to know.

Dot (Intormal), For each $k \in \mathbb{N}^{+}$, a faction $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is called comparable if there is a computer poogean such HAA_{1} on a given input $\vec{a} \in \mathbb{N}^{k}$ outputs $\epsilon(\vec{a})$. A ration $R \subseteq \mathbb{N}^{k}$ is called called conphtaple if $\mathbb{1}_{R}: \mathbb{N}^{k} \rightarrow\{0,\} \leq \mathbb{N}$ is couputable.

Prop. Computable tunction/relations are arithmetical, ie. definable in $N:=(\mathbb{N},, 0,5, i)$ Ceqhivaleats, \varnothing-desirable in N).
Proof. Will fillor easily from the def of reputable, once given.
Coding of tuples of natural numbers and formenlas. "Clearly" the function $n \mapsto p_{n}$:= nth $^{\text {th }}$ prime number is comparable and thus the function $\langle\ldots\rangle_{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}^{+}$ is a computable injection. Farthernore, the function $\left(n_{1}, \ldots, n_{k}\right) \leftrightarrow P_{1}^{n_{1}} \cdot P_{2}^{n_{2}} \ldots P_{k}^{n_{k}}$ $\langle\ldots\rangle: \mathbb{N}^{<\mathbb{N}} \rightarrow \mathbb{N}^{+}$is also a infective and its left-inverse is comparable $\vec{a} \mapsto\left\langle\ln \left(\vec{a}^{-1}\right), \vec{a}\right\rangle \ln (\vec{a})$
in the following sense hat the decoding functions
$l h: \mathbb{N} \rightarrow \mathbb{N}$
n Hs the largest l s.t. $P_{1}^{l} I_{n}$
are w-putable.
and $(\cdot) .: \mathbb{N}^{2} \rightarrow \mathbb{N}$ bor each $i \in \mathbb{N}$
$(n, i) \mapsto$ the longest l s.t. $p_{i+1}^{l} \mid n$
if $n \neq 0$ and $i<\ln (n)$ and 0 otherwise.

We now awes this to encode $\sigma_{\text {ar char }}:=(0,5,+1)$-formulas as fallows. Encode the Alph $\left(\sigma_{\text {acth }}\right)$ bs the following unaber:

$$
\begin{aligned}
& 0, S,+, \cdot,(,), 9,=, 7,7,1, v_{0}, v_{1}, v_{2}, \ldots \\
& 0123456789101213
\end{aligned}
$$

and we denote the number corcesponcting to a gabol $s \in A \mid p h\left(\sigma_{a r k}\right)$ by $c(s)$. En, $c(1)=4$ and $c\left(v_{17}\right)=28$.
Next, we encode any word $w:=\left(w_{0}, \ldots, w_{e-1}\right) \in A l p h\left(\sigma_{c_{c} h_{h}}\right)^{<\mathbb{N}}$ by the number $\Gamma_{W}{ }^{\top}:=\left\langle c\left(w_{0}\right), c\left(w_{1}\right), \ldots, c\left(w_{(-1}\right)\right\rangle$. This gives a encoding $\left.\Gamma_{\varphi}\right)$ for each $\sigma_{\text {arnhem }}$ - formant φ.

Pope Because recursive deficitions are proggammeble, the following sets are coupstable: Formulas $\left(\sigma_{\text {ark }}\right)$, Sentences $\left(\sigma_{\text {ar chan }}\right)$, etc.

In particular, the following taction is computable:

$$
S_{u} b_{0}: \mathbb{N}^{2} \rightarrow \mathbb{N}
$$

defined b_{b} sting $\operatorname{Su} b_{0}(n, m):={ }^{r} \varphi\left(\dot{m} / v_{0}\right)^{\top}$, if $n={ }^{r} \varphi{ }^{\top}$ for some $\sigma_{a r m}$-tomas la φ, and 0 otherwise. Recall Kt $\dot{m}:=\underbrace{S(S(\ldots S}(0) \ldots)$. As mentioned above, computable tuchious are arithetic, and me vet Subj (x, s, z)
be the o-arthm Gruula alfining his function, ie. Obtaining it graph, so tor any $n, m, k \in \mathbb{N}$, we have Mat
sab. $(n, m)=k$ iff $\underline{N} \underline{S_{u} b_{0}}(u, n, k)$.
We now prove a lemma, which in a sense, implies that thee is a program that prints its swan code. This is unde possible by the fad tut we can use the sy-bol vo in two wags: as a symbol and as variable that kan content. This is possible even in English:
(Quine) Write the following sentence in quotes trice, the secad tine with jades:
"Write the following sentence in quotes trice, the seconal time with pates:"
Fixed Point lemma (for N). For each extended $\sigma_{\text {arm ant }}$ formula $\varphi\left(v_{0}\right)$ there is a $\sigma_{a r t h}$ sentence θ such that $\underline{N} \vDash \theta \leftrightarrow \varphi\left({ }^{\circ} \theta / v_{0}\right)$.

Remark. This establishes a bridge between the code of θ and and the carepretation of θ, Jest like is the Eylish sentence above.

Prot. Tale $\psi:=\exists z\left(\underline{S_{u} b_{0}}\left(v_{0}, v_{0}, z\right) \wedge \varphi(z)\right)$, so $\psi\left(v_{0}\right)$ is an extended torumla and let $m:=r \psi\rangle$. let $\theta:=\psi\left(\dot{m} / v_{0}\right)$ there $\dot{m}:=S(S(\ldots s(0)) \ldots)$.
Note $t h-T \operatorname{Sub}_{0}(m, m)=\operatorname{Sub}_{0}\left(r_{\psi}{ }^{\top}, m\right)={ }^{r} \psi\left(\dot{m} / v_{0}\right)^{\top}={ }^{r} \theta^{\top}$.
Thus, $\times \underset{\sim}{(1)} \underline{S_{n} b_{0}}\left(m, m,{ }^{\circ} \theta^{\top}\right)$. Now watch the magic:

$$
\underline{N} \vDash \theta \text { if } N \vDash \psi\left(\dot{m} / v_{0}\right)
$$

iff $\underline{N} \vDash \exists_{z}\left(\underline{S_{2} b_{0}}(\dot{m}, \dot{m}, z) \wedge \varphi(z)\right)$
of there is $b \in \underline{N}$ s.f. $N \vDash \operatorname{Sub} .(m, m, b) \wedge \varphi(b)$

$$
\text { if } \underline{N} \vDash \operatorname{Su} b_{0}\left(m, m,{ }^{r} \theta^{\top}\right) \wedge \overline{\varphi\left(\theta^{\top}\right)}
$$

(b, θ) iff $\underline{N}=\varphi\left({ }^{r} \theta^{\prime}\right)$.

