Math Logic: Model Theory \& Computability
Lecture 23

Main lemma. Let τ be a signature. Every Henkin τ-thong It has a model.
Proof. Suspired by the last lemma (that H equates even term to a constant scaubol) we may ter to define the underlying set of our future model as jest the set C of all constant yanhols of t. The only issue with his is Chat it might be that $\left(c_{1}=c_{2}\right) \in H$ bor two distinct constant syatuls $c_{1}, c_{2} \in C$. To lix his , we take us the underlying set $\hat{C}:=C / \sim=\left\{[c]_{\sim}: c \in C\right\}$, there \sim is the equivalence relation on C defined by

$$
c_{1} \sim c_{2}: \Leftrightarrow\left(c_{1}=c_{2}\right) \in H .
$$

The axioms for equality (6) al maximal consistency of H ensures that \sim is include a_{n} equivalence relation. For $\vec{a}:=\left(a_{1}, a_{2}, \ldots, a_{4}\right) \in C^{"}$, we denote

$$
[\vec{a}]_{\sim}:=\left(\left[a_{1}\right]_{\sim},\left[a_{2}\right]_{\sim}, \ldots,\left[a_{n}\right]_{\sim}\right) .
$$

We define a τ-structure $M:=(\tau, \tau)$ as follows:
(i) $c^{\mu}:=[c]_{n}$ be each $c \in \operatorname{Conct}(\tau)=C$.
(i) $f^{\underline{M}}\left([\vec{a}]_{\sim}\right):=[b]_{\sim}$ for ouch $f \in \operatorname{Furct}_{k}(\tau), \vec{a}:=\left(a_{1}, \ldots, a_{k}\right)$, there $b \in C$ is such that $\left(f\left(a_{1}, a_{2}, \ldots, a_{k}\right)=b\right) \in H$.
Proof of corcectuon. We first show the for each $\vec{a} \in C^{k}$ there is a $b \in C$ such the $(f(\vec{a})=b) \in H$, but his is a special case of the previous lemma. Second, we need to show ht the definition is N-invariant, ice. Doesu'd depend on the ropesulatives of r-clones. Suppose to c $\vec{a}, \vec{c} \in C^{k}$ ad $b, l \in\left(\right.$ we such $H_{\lambda} \vec{a} \sim \vec{c}$ (i.e. $\left.a_{i} \sim c_{i}\right),(f(\vec{a})=b) \in H$, and $(f(\vec{c})=d) \in H$. By the axiom for equality ant function symbol ad maximal consistency of H, we have $(f(\vec{a})=f(\vec{c})) \in H$ and hence also $(b=d) \in H$ bs the transitivity-af-equality axioms al again maxinalif oft. (iii) $R^{\mu}\left([\vec{a}]_{\sim}\right)$ holds $\Leftrightarrow R(\vec{a}) \in H$, cher $R \in \operatorname{Re}_{k}(\tau)$ ant $\vec{a} \in C^{k}$.

Proof of corectnen. This follows from the axiom for equality and relation syabol, as well as the unxiuclity of H.

Claim 1. For each τ-term t vithout variables and $b \in C$,

$$
t^{\underline{M}}=[\ell]_{\sim} \quad \text { iff } \quad(t=\beta) \in H \text {. }
$$

Proof of Claim. We prove his h, iuclaction on the construction of t. case 1: $t=c$ for sound $c \in C$. Then the claim follows from the def. of \sim. Case $2: t:=f\left(t_{1}, \ldots, t_{k}\right)$ for some $f \in F_{u c c} t_{k}(\tau)$ and t-terns t_{1}, \ldots, t_{k} without varichbs. B_{y} induction we know A_{A} be all $i, t_{i}^{\mu}=\left[b_{i}\right]_{\text {, ff }}\left(t_{i}=b_{i}\right) \in H$, and there are b_{i} such $\mathrm{Ha}_{1}\left(t_{i}=b_{i}\right) \in H$ by the previous leman, so we also have $t_{i}{ }^{M}=\left[b_{i}\right]_{n}$. Then, by t_{n} deft. of $\underline{M}, f^{\underline{M}}\left([b,]_{\sim}, \ldots,\left[b_{k}\right]_{\sim}\right)=[d]_{\text {, }}$ to c cone $d \in C$ such hat $\left(f\left(b_{1}, \ldots, b_{k}\right)=d\right) \in H$. Then b, the trancitivit-ot-egaclity axiom ad max. of $H,(d=c) \in H$, and hence $a l s o,\left(f\left(t_{1}, \ldots, t_{k}\right)=c\right) \in H$ by the axiom for equality al function sy-bol.
(laim2. $M \notin$ iff $\varphi \in H$, for each τ-senders φ.
Proof. We induct on the beath/constaction of φ.
Case: $\varphi:=\left(t_{1}=t_{2}\right)$ for sone τ-terns t_{1}, t_{2} wo variables, The let $\left[b_{i}\right]_{\sim}:=t_{i}^{\frac{m}{m}}$ so by $\left(l a i m l_{1}\left(t_{i}=b_{i}\right) \in H\right.$. Thus, $\left.\mid t_{1}=t_{2}\right) \in H$ iff $\left(b_{1}=b_{2}\right) \in H$ iff $\left[b_{1}\right]_{n}=\left[b_{2}\right]_{\sim}$ iff $t_{1}=t_{2}^{\underline{M}}$ iff $M \vDash t_{1}=t_{2}$.

Case 2: $\varphi:=R\left(t_{1}, \ldots, t_{k}\right)$ for sone τ-fetus t_{1}, \ldots, t_{k} vithact variables. Then let $\left[b_{i}\right]_{\sim}:=t^{\frac{M}{i}}$, so b_{y} (limimi, we have $\left(t_{i}=b_{i}\right) \in H$. Then $R\left(t_{1}, \ldots, t_{u}\right) \in H$ ft $R\left(b_{1}, \ldots, b_{\mu}\right) \in H$ of $\left(b\right.$, the clef. of $\left.R^{\mu}\right) \quad R^{\mu}\left(\left[b_{1}\right]_{\sim}, \ldots,\left[b_{k}\right]_{n}\right)$ holds ifs $M \in R\left(t_{1}, \ldots, t_{u}\right)$.

Case 3: $\varphi:=\neg \psi$ for some τ-sentence ψ. Then $\neg^{\psi} \in H$ iff $\psi \notin H$ if by in-
ductions $\underline{M} \neq \psi$ itt $\underline{M} \vDash \neg \psi$.
Case 4: $\varphi:=\psi_{1} \rightarrow \psi_{2}$ for soce τ - centences ψ_{1}, ψ_{2}. Then $\left(\psi_{1} \rightarrow \psi_{2}\right) \in H$ ift $\rightarrow \Psi_{1} \in H$ or $\psi_{2} \in H$ (by maxinatity and comsistancy of H) iff (ξ_{y} inchction) $M \vDash \sim \psi_{1}$ or $M \vDash \psi_{2}$ iff $M \vDash\left(\psi_{1} \rightarrow \psi_{2}\right)$.

Care S: $\varphi: \exists v \Psi$ for sone extencled τ-formanta $\Psi(v)$. Then $(\exists \cup \Psi) \in H$ iff there is $c \in C$ such Vat $\psi(c / v) \in H \quad \Rightarrow$ tollons trow the Heakinness of H and $<$ hllows foom HWG Q2) iff tho is $c \in C$ sch $\operatorname{HA} M \vDash \psi(\%)$ iff there is $c \in\left(\right.$ sule the $\Psi^{\underline{M}}(v)\left([c]_{\sim}\right)$ halds iff $J^{-} a \in \tilde{C}$ such tht $\psi \underline{\underline{M}}(v)(a)$ holds iff $M \not F \exists_{v} \psi$.

This finiches the proof of Main lemann, and hene also of Gödd Goupletenen.
Complete and computable theories.
I. the end of the $19^{k h}$ and begituin of $20^{\text {th }}$ centuries, a demand acose (b) Hilbert and others) to build a womplete theong Tformathemastics (set theorg) or evere just for avithactic (i.e. $\mathbb{N}:=(\mathbb{N}, 0,5, \pm, \cdot))$ such tht the axiour of this theong are "easily recognczable." The latter term was focmalized by saging tht thre is a rouputer proycan (equivaleatly, a Taring wachine, a wapatable relation, efe) thet cecogaizes the axious of T, ie. given a rentence φ, it returns YES if $\varphi \in T$ ad NO, otherwise.

Nonexangles (a) $T h(N)$, with $\underline{N}:=\left(\mathbb{N},(, S,+,-)\right.$, is complete l_{y} definition, but it is not even hanas recoynizable, let alone 'bs woupaters (cecall Goldbach, Tain Pisinss). (b) $P A$ and $Z F C$ ane both wompnder recogrizable hat Gidel proved that
these we not conplete Neories. This theoren is known as Göclel's Incompletenens theorem, whose version (1 , Rospec) says int is tact any consistect thoon' That is rich enough to "interpret" PA is eithor irnomplete or won-coupaticble li.e. not computer recognizable. In other woods, "Ephm tpelitil sh yptey in chlumf".

We will sketch the proot of boidel's Incoppletenen, Vat let's discass the sane zuestion about reducfs of $\mathbb{N}:=(\mathbb{N}, 0, S, t, \cdot)$, hamely: $\underline{N}_{s}:=(\mathbb{N}, 0, s)$ and $\underline{N}_{+}:=(\mathbb{N}, 0, S, t)$.

Theoren. There is a copplete computable theory T_{s} in the sightore 10,5) inh tht $\underline{N}_{s} \notin T_{s}$, i.e. T_{s} is a coupatchle axiomatization for $T h\left(\underline{N}_{s}\right)$.
Proof. Such a T_{s} vas constacted in homeropk ad proven ho be waplete using wacthl categoricity.

Theoren (Presbueyer). There is a complete couputable $(0, s,+)$-theog, namely P res $A:=P A \mid(0, s, t)$ $:=$ all axioms of PA that ouls use $0, S,+$, such that $\underline{N}_{+} \vDash P_{\text {res } A, ~ i . e . ~ P r e s ~}^{A}$ is a couputable axiomatization of Th $\left(\underline{N}_{+}\right)$.
Proot. PresA is call Presbarger Arithuetic and the paoot Vact it is conplete as a $(0,5, t)$-theory uses the technigue of quantifier elimination, chich is beyoud ous course. In tait, the proot tha Mt not only PresA is wouplite lat $T_{h}\left(\underline{N}_{+}\right)$is couputrable.

The issue arises then we have both + and . becme Vi, eables coding of taples of naproal umbers inte single natural amathers (via the Ginese Remcinclec theorem), which in tuen mackes it possible to envole selt-refecence/diagonalization, hene Liar's Pacadox: a sentence which says "I'm not provable from PA".

